Difference in Difference

Statistic Modeling & Causal Inference | Oswald & Ramirez-Ruiz

Agenda

- Lecture review
 - Unit and Time comparisons
 - Difference in Difference
 - Parallel Trends Assumption
 - Estimation & Interpretation

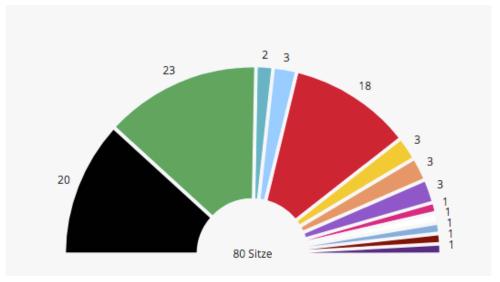
• Diff-in-diff in R

- Until now: focus on treatment / control comparison without consideration of time
- Time important for causality: cause always precedes the effect
- By considering both, units and time, we can:
 - Compare individuals to themselves, to account for units' characteristics
 that affect both outcome and treatment (~ permanent differences
 between groups).
 - Compare how outcomes for different units change across time, to account for characteristics of different periods (~ trends in Y that affect all units, regardless of treatment).

Example case

Effect of COVID-19 on electoral outcomes

- Focus: municipal elections in Bavaria in March 2020 (Leininger & Schaub, 2020)
- Treatment: cases per county
- Outcome: CSU vote shares
- Comparison over time: 2014 and 2020
- Comparison between units: two different Counties



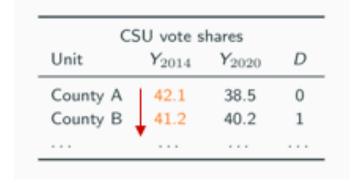
https://www.wahlen-muenchen.de/ergebnisse/20200315stadtratswahl/index.html#w_8117_18028

Unit & Time Comparisons

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

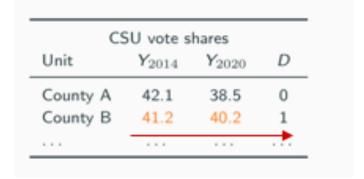
Assume we have a data set with **two outcome measurements:** before and after treatment. As usual, we have a problem of not knowing **counterfactuals**. We could:

Compare the treatment and control groups



This assumes the PO of control group is the same as the counterfactual PO for those being treated.

Compare before and after treatment for the treatment group



This assumes no change in average PO over time.

or

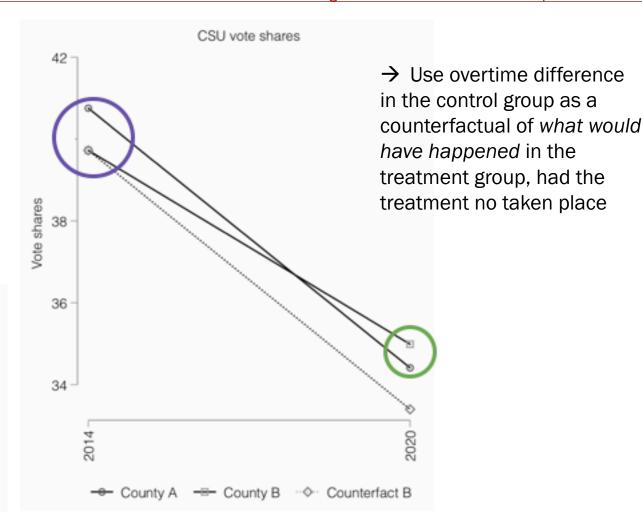
Difference-in-Difference

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

Or consider both!

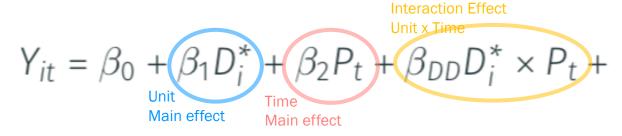
- Get the difference between the treatment and control group **after** treatment
- Get the difference between the treatment and control group **before** treatment
- 3. Subtract the second difference O from the first O

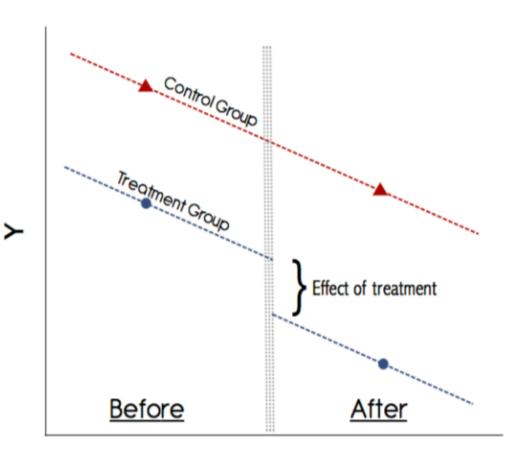
	CSI	J vote sha	ares	
Unit	Y_{2014}	Y_{2020}	D	$\Delta Y_{2020-2014}$
County A	42.1	38.5	0	-3.6
County B	41.2	40.2	1	-1
	(-0.9)	(1.7)		(2.6)



Main idea:

- Sometimes treatment and control units move in parallel in the absence of treatment.
- When they do, we can see how much do the treated units diverge from the post-treatment expected path, compared to the control units.
- We can estimate the treatment effect as the divergence from the expected outcome of the treatment group in the absence of treatment.

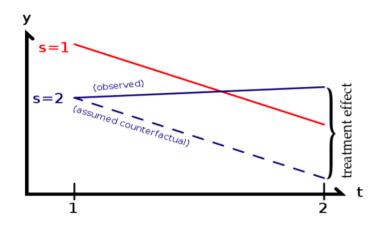


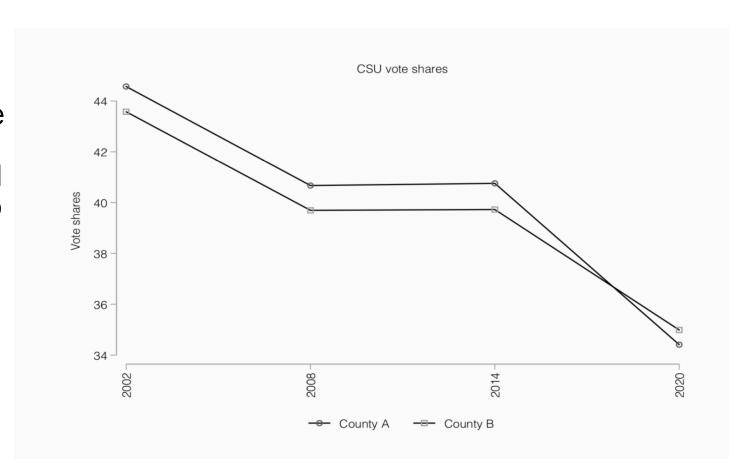


Parallel Trends Assumption

Statistical Modeling & Causal Inference - Oswald | Ramirez-Ruiz

- Use the overtime difference in the control group as a counterfactual
- Assume that observed overtime changes in the control group reflect, on average, unobserved changes in the treatment group in the absence of treatment.





1. Manually, using average outcome values for subgroups defined by D and t.

$$DiD = \{E[Y_{1c}|D=1, t=1] - E[Y_{0c}|D=0, t=1]\} - \{E[Y_{1c}|D=1, t=0] - E[Y_{0c}|D=0, t=0]\}$$

2. Calculate first differences and regress on D. → wide format data

$$\Delta Y_{ct_0-t_1} = \alpha + \delta D_c + \Delta_{v_c}$$

3. Regression formulation of the DiD model. → long format data

$$Y_{it} = \beta_0 + \beta_1 D_i^* + \beta_2 P_t + \beta_{DD} D_i^* \times P_t + q_{it}$$

Regression output:

	Share CSU	
Treat	-1.03	
	(1.56)	
Post	-6.34***	
	(0.72)	
$Treat \times Post$	1.61**	
	(0.79)	
Intercept	40.76***	
	(1.39)	
N	192	
R^2	0.16	
Standard errors in	parentheses	
* $p < 0.10$. ** p	< 0.05, *** p < 0.01	

D*	t = 0	t = 1	Difference
1	$\beta_0 + \beta_1$	$\beta_0 + \beta_1 + \beta_2 + \beta_{DD}$	$\beta_2 + \beta_{DD}$
0	β_0	$\beta_0 + \beta_2$	eta_2

$$Y_{it} = \beta_0 + \beta_1 D_i^* + \beta_2 P_t + \beta_{DD} D_i^* \times P_t + q_{it}$$
Main effect

Interaction Effect
Unit x Time

$$A_{DD} D_i^* \times P_t + q_{it}$$

Wide

Wide format table				
Unit c	Y_{c2014}	Y_{c2020}	D_c	
County A	42.1	38.5	0	
County B	41.2	40.2	1	

- Only one row per individual or unit.
- Outcome values included in different variables, by year.

Long

Long format table				
Unit c	Year t	Y_c	D_c	
County A	2014	42.1	0	
County A	2020	38.5	0	
County B	2014	41.2	1	
County B	2020	40.2	1	

- One column for every variable.
- One row for every unique observation

Parallel Trends Violations

Statistical Modeling & Causal Inference - Oswald | Ramirez-Ruiz

Selection and Targeting

- Units may self-sort for reasons that are not random
- Policies may be targeted at units in a non-random way
- Compositional differences across time
 - The composition of a sample might change in ways that confound the treatment effect.
- Long-term effects vs. reliability
 - Parallel trends is more likely to hold in the short term.
- Functional form dependence
 - DD is more reliable if the treatment and control groups are more similar at baseline.

Parallel Trends Diagnostics

Statistical Modeling & Causal Inference - Oswald | Ramirez-Ruiz

- 1. Pre-treatment trends in the outcome
- 2. Placebo test using previous periods
- 3. Placebo test using alternative outcomes
- 4. Placebo outcomes

Further Resources

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

For any coding issues – <u>Stackoverflow</u> Hertie's Data Science Lab – <u>Research Consulting</u>