Matching

- Matching logic in experimental context
- Matching (exact & propensity score)
- Common support
- (Balance) Tables in R
- Matching in R

Experiment analogy

- Conditional randomization: choose relevant covariates; random treatment assignment within (combinations of) covariate levels (a.k.a. randomized block design)
- Paired randomization: as above; only two subjects per (combination of) covariate value (but multiple covariate-identical pairs allowed), one of which is randomly assigned to the treatment.

Randomized block design

- Subjects are assigned to blocks, based on gender
- Within each block, subjects are randomly assigned to treatments (placebo or vaccine)
- It is thought that men and women may react differently to this medication
- This design ensures that each treatment condition has an equal proportion of men and women
- As a result, differences between treatment conditions cannot be attributed to gender

Gender	Treatment		
	Placebo	Vaccine	
Male	250	250	
Female	250	250	

Paired randomization design

- Subjects are grouped into pairs based on some blocking variable(s)
- Within each pair, subjects are randomly assigned to different treatments
- Below, 1000 subjects are grouped into 500 matched pairs
- Each pair is matched on gender and age

Pair	Treatment		
	Placebo	Vaccine	
1	1	1	
2	1	1	
		•••	
500	1	1	

Matching

- Through matching techniques, we seek to explicitly balance the distribution of covariates between treatment and control groups.
- To overcome the lack of 'twins' to compare treated and controlled units, we can match observations to the most plausible counterfactual available.
- There are multiple ways do define what "most plausible" means. We must choose a technique for that purpose:
 - Mahalanobis/nearest neighbor covariate matching
 - Propensity score matching
 - Coarsened exact matching

Exact Matching

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

1. Use theoretical and empirical knowledge to identify relevant confounder(s) (X)

- 2. Starting from treated subjects, select at least one match from the control group with exactly the same value(s) on *X*
- 3. Drop subjects off "common support" (unmatched subjects)

4. Estimate causal effect as the average difference in Y across pairs of matched subjects.

$$\hat{\delta}_{ATT} = \frac{1}{N_T} \sum_{D_i=1} (Y_i - Y_{j(i)}) = \frac{1}{N_T} \sum_{D_i=1} (Y_i - [\frac{1}{M} \sum_{D_i=1} Y_{j_m(1)})$$

If there is more than one match, you can use their average outcome as the counterfactual.

Propensity score matching

- A propensity score is a measure of the predicted probability of being in the treatment group, given the relevant covariates (W).
- We can use propensity scores in order to match treated units with control observations that look as if they were treated.
- This is usually modeled with logit/probit regression by which all the potential confounders are used to estimate the single value (PS).

Logit/probit regression

- Similar to linear regression, except we're working with a binary categorical outcome variable.
- Instead of fitting a line to the data, it fits an S-shaped curve that goes from 0 to 1. It tells you the probability of outcome based on the covariates -this is our propensity score!

• If the model for estimating the propensity score is well specified (ie. if we chose the right covariates to fulfill back-door criterion), we can control for (match on) the propensity scores and achieve conditional independence.

$$Y_0, Y_1 \perp D | pr(W)$$

When there are no exact matches on PS, we can define an algorithm to find the most plausible counterfactual based on PS
→ implies defining issues like replacement, caliper/trimming.

Steps for matching using propensity scores

- Define the set of **potential confounders** (W) by laying out the causal graph.
- Model the probability of P(D = 1 | X), using a logit/probit regression model.
- Use predicted treatment probabilities as an estimate of **propensity scores**.
- Inspect PS distribution to define whether to **trim** or not. (discard observations unlikely to have a plausible match. Renounce ATE).
- Match subjects from treatment and control group applying an algorithm of your choice.
- Check whether your treatment (D=1) and control (D=0) groups are balanced in terms of the covariates you defined (t-tests). If not balanced, repeat.
- Only then estimate treatment effect (the matching method in itself does not estimate the effect).

Common support (the curse of dimensionality)

- The more confounders we consider, the less likely it is that we find units with otherwise identical characteristics in the treatment and control groups.
- We cannot compare all units to a 'twin': they lack common support.
- Without common support for all units, we cannot estimate the ATE.
- Knowing which information is missing is important. Depending on where the gaps are, we can estimate other effects.

Zhang, Z., Kim, H. J., Lonjon, G., & Zhu, Y. (2019). Balance diagnostics after propensity score matching. *Annals of translational medicine*, 7(1).

Common support - ATE

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

Name	Y	D	x
Jake	10	1	3
Gina	8	1	2
Terry	6	1	1
Rosa	8	0	3
Charles	6	0	2
Ray	4	0	1

In this case, we have full common support, meaning that the distributions of *X* under both treatment and control are equal. We could gather the ATE.

Not equal but large overlap (with imbalance)

Partial common support - ATT

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

Name	Y	D	x
Jake	10	1	3
Gina	12	1	3
Terry	8	1	2
Rosa	6	0	3
Charles	3	0	2
Ray	1	0	1

In this case, all our treated units have common support in the control group. But not our controls have a "twin" in the treatment group. We can gather the Average Treatment Effect for the Treated.

No common support

Name	Y	D	x
Jake	15	1	6
Gina	10	1	5
Terry	5	1	4
Rosa	10	0	1
Charles	6	0	2
Ray	4	0	3

In this case, none of our control and treated units have common support. Our units are non-comparable in their levels of *X*.

Further Ressources

Statistical Modeling & Causal Inference – Oswald | Ramirez-Ruiz

For any coding issues – <u>Stackoverflow</u> Hertie's Data Science Lab – <u>Research Consulting</u>