Causal Graphs

Statistical Modeling & Causal Inference | Oswald & Ramirez-Ruiz
Agenda

• Causal Graphs
 • DAGs
 • Translating Questions into Graphs
 • Typical Patterns

• Plotting with R
 • ggplot
 • ggdag
Graphs

• Express beliefs about relationships among variables
• Draw conclusion about the nature of statistical associations
Graphs

- Express beliefs about relationships among variables
- Draw conclusion about the nature of statistical associations

Exogeneous: No parents
Endogenous: No children
Terminal: (directed) path

“ancestor”
“descendants”
DAGs

• “Directed acyclic graphs”
• Informal graphs expanded by adopting formal rules
• Compatible with POF but more convenient with complex causal models
• Practical for choosing “control” variables
• Encode researcher’s qualitative causal assumptions
• Require theoretical and empirical knowledge

“A child cannot be a parent of their parents”
“The future cannot predict the past”
1. What causal relationship are you interested in? Define D & Y.
2. Collect all direct causal effects among those variables.
3. Collect all common causes of any pair of variables.
4. Also include those that you can’t measure / are unobserved!
5. Cut the causes of just one variable (in case you have included them previously)

Caution: an absent causal effect is a (strong) assumption!
DAG Patterns

- **confounder**
 - $D \leftarrow X \rightarrow Y$
 - “fork”

- **mediator**
 - $D \rightarrow X \rightarrow Y$
 - “chain”

- **collider**
 - $D \rightarrow X \leftarrow Y$
 - “inverted fork”
Confounding

- Induces statistical association between D and Y
- **Conditioning** on a confounder (or a descendant of a confounder) on the path blocks the path
- Failing to condition on confounder induces non-causal statistical association or **omitted variable bias**
- In most cases, you want to condition on confounders
Mediation

- Mediators let us express how exactly a treatment impacts the outcome \rightarrow What is the mechanism?
- Cause & effect relationships can be mediated by multiple mediators
- Conditioning on them can induce bias (post-treatment bias)
- In most cases, you do not want to condition on mediators

D \rightarrow X \rightarrow Y
“chain”

mediator

stimulated nervous system

X

coffee

exam result

Y
DAG Patterns

- Show how two variables jointly affect another variable
- Conditioning on collider induces statistical association between two variables (collider bias)
- In most cases, you do not want to condition on mediators

Diagram:

- Collider
- X (being movie star)
- D (beauty)
- Y (talent)
- “inverted fork”

Equation:

\[D \rightarrow X \leftarrow Y \]

“inverted fork”
Conditioning?

confounder

```
D ← X → Y
```

D → Y

“fork”

mediator

```
D → X → Y
```

D → Y

“chain”

collider

```
D → X ← Y
```

D → Y

“inverted fork”

Image: https://theindianspot.com/deep-conditioning-hair-treatments/
Plotting in R
Further Resources

For any coding issues – Stackoverflow
Hertie’s Data Science Lab – Research Consulting